

TEST REPORT No. 109 SF/24 U en
Date: 29th of April 2024

page (pages)
1 (6)

Determination of thermal transmittance

(test title)

Test method: LST EN ISO 12567-1:2010 Thermal performance of windows and doors – Determination of thermal transmittance by hot box method – Part 1: Complete windows and doors (EN ISO 12567-1:2010); LST EN ISO 12567-1:2010/AC:2011

(number of normative document or test method, description of test procedure, test uncertainty)

Specimen description: inward opening wooden window with external aluminium cladding. Sample dimensions: width 1230 mm, height 1480 mm. Product frame/sash material: wooden (pine). Filling the product sash /frame: glass. System: ARKA lux. Type of opening: inward opening turn & tilt. Fittings: UNI JET (Gretsch-Unitas). Locks / handles: GreenteQ stainless steel. Fastening: 9 points. Gaskets: Schlegel QL-3091; Stemeseder AD 1432. Other details: no another details. Glazing: triple glass 3k4LowE1.0+4+4LowE1.0-20SW9005;18SW9005. Producer and date of the glazing unit: SIA „Stiklu Centrs“ 24.11.2023. Date of production of sample: 15.12.2023.

(name, description and identification details of a specimen; information submitted by the customer)

Customer: SIA “ARKA lux”, Vecā ostmala 10, Liepāja, LV-3401, Latvia
(name and address)

Manufacturer SIA „ARKA lux“, „Pori“, Virgas pag., Dienvidkurzemes nov., LV-3433
(name and address)

Test results:

Name of the indicator and unit	Test method reference no.	Test result	Expanded uncertainty ±%
Thermal transmittance, W/(m ² ·K)	LST EN ISO 12567-1:2010; LST EN ISO 12567-1:2010/AC:2011	0.82	0.02224

Notes 1) The testing are carried out in purpose for conformity assessment of the product according to LST EN 14351-1:2006+A2:2016
2) The expanded uncertainty is calculated by multiplying the sum of the standard uncertainty by the coverage factor $k = 2$, which, in the case of a normal distribution, corresponds to a confidence level of 95%. The standard uncertainty is calculated according to EA-4/02.
3) Conformity of test results is evaluated using the decision rule in accordance with ILAC-G8: 09/2019 point 4.2.1.

Tested at: Building Physics Laboratory, Institute of Architecture and Construction of Kaunas University of Technology
(name of the test laboratory)

Specimen delivery date: 15/04/2024 Date of testing: 25/04/2024

Sampling: The test specimen sampled by customer. Description N_o. 109/24, 04/04/2024

Additional information: Application 04/04/2024
(any deviations, complementary tests, exceptions and any information related with particular test)

Annexes: Annex 1. Test results. Annex 2. Specimen data. Annex 3. Scheme of climate chamber „Hot box“.
(indicate annex numbers and titles)

Technical manager:
(approves the test report)

R. Ramanauskas
(n., surname)

Tested by:
(responsible for testing and results)

A. Burlingis
(n., surname)

S.P.

(signature)

Validity – the named data and results refer exclusively to the tested and described specimens.
Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Annex 1. Test results:

Data element	unit	Value
Air velocity on warm side, downwards, v_i	m/s	0.31
Air velocity on cold side, upwards, v_e	m/s	4.50
Total power input to metering box, Φ_{in}	W	43.86
Heat flow density through a specimen, q_{sp}	W/m ²	16.15
Warm side air temperature, θ_{ci}	°C	19.46
Cold side air temperature, θ_{ce}	°C	0.43
Environmental temperature of the warm side, θ_{hi}	°C	19.55
Environmental temperature of the cold side, θ_{ne}	°C	0.41
Measured thermal transmittance of a specimen, U_m	W/(m ² ·K)	0.844
Thermal transmittance of a specimen, U_{st}	W/(m ² ·K)	0.8163
Uncertainty of the measurement, ΔU_m	W/(m ² ·K)	0.02224

Tested by: A. Burlingis

Date: 25/04/2024

Validity – the named data and results refer exclusively to the tested and described specimens.
Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Annex 2. Specimen data

Specimen description:

inward opening wooden window with external aluminium cladding. Sample dimensions: width 1230 mm, height 1480 mm. Product frame/sash material: wooden (pine). Filling the product sash /frame: glass. System: ARKA lux. Type of opening: inward opening turn & tilt. Fittings: UNI JET (Gretsch-Unitas). Locks / handles: GreenteQ stainless steel. Fastening: 9 points. Gaskets: Schlegel QL-3091; Stemeseder AD 1432. Other details: no another details. Glazing: triple glass 3k4LowE1.0+4+4LowE1.0-20SW9005;18SW9005. Producer and date of the glazing unit: SIA „Stiklu Centrs“ 24.11.2023. Date of production of sample: 15.12.2023.

— height,	1.48 m;
— width,	1.23 m;
— projected area,	1.83 m ² ;
— frame thickness,	100 mm
— photos and drawings of the sample:	

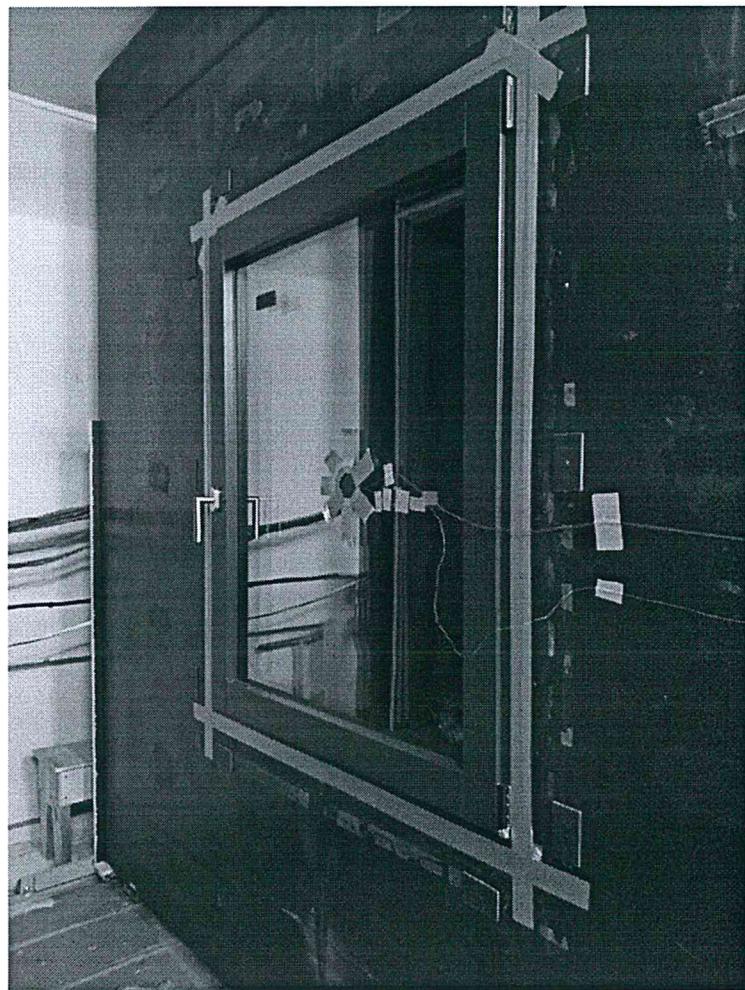
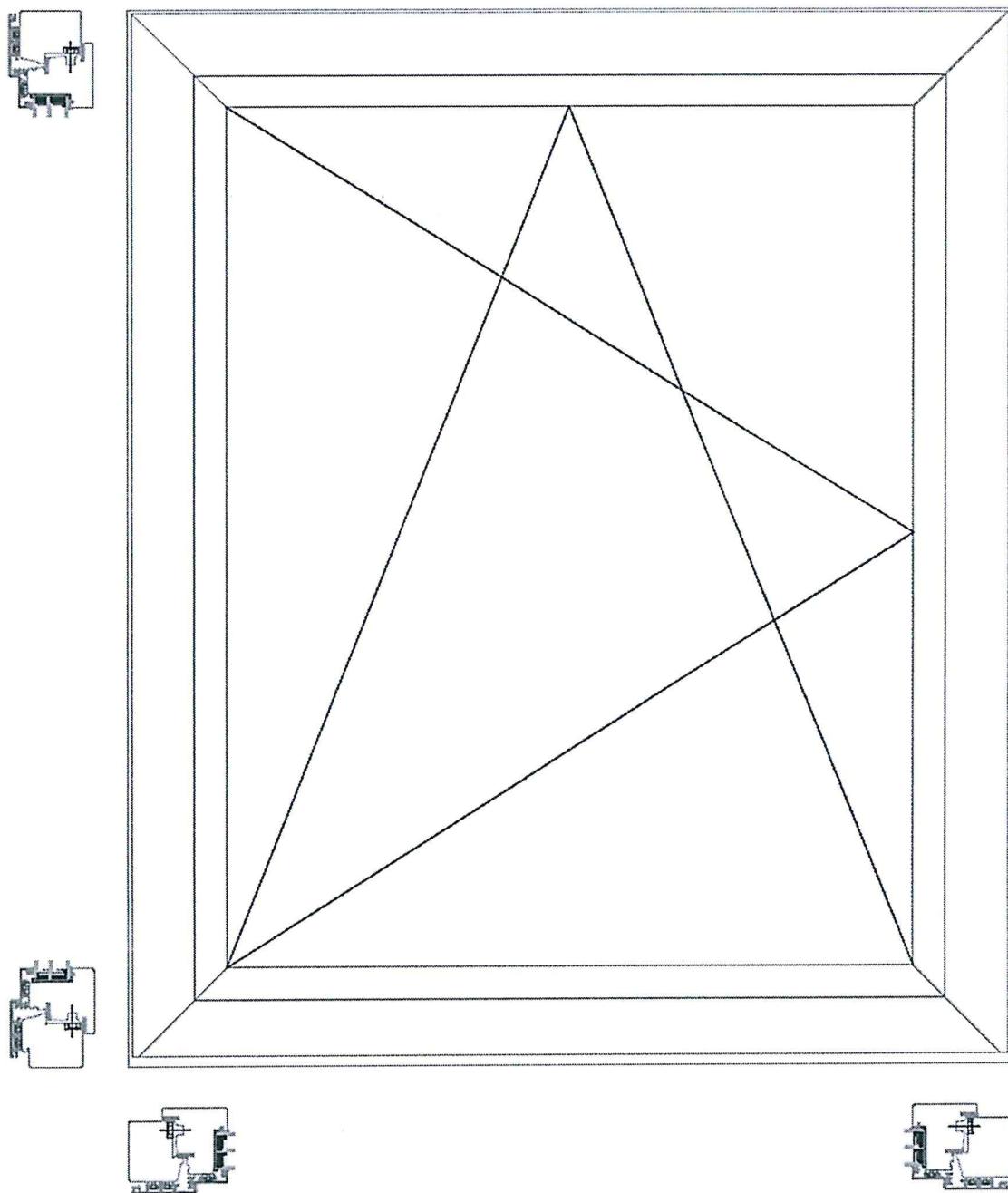



Fig.1 Photos of the sample

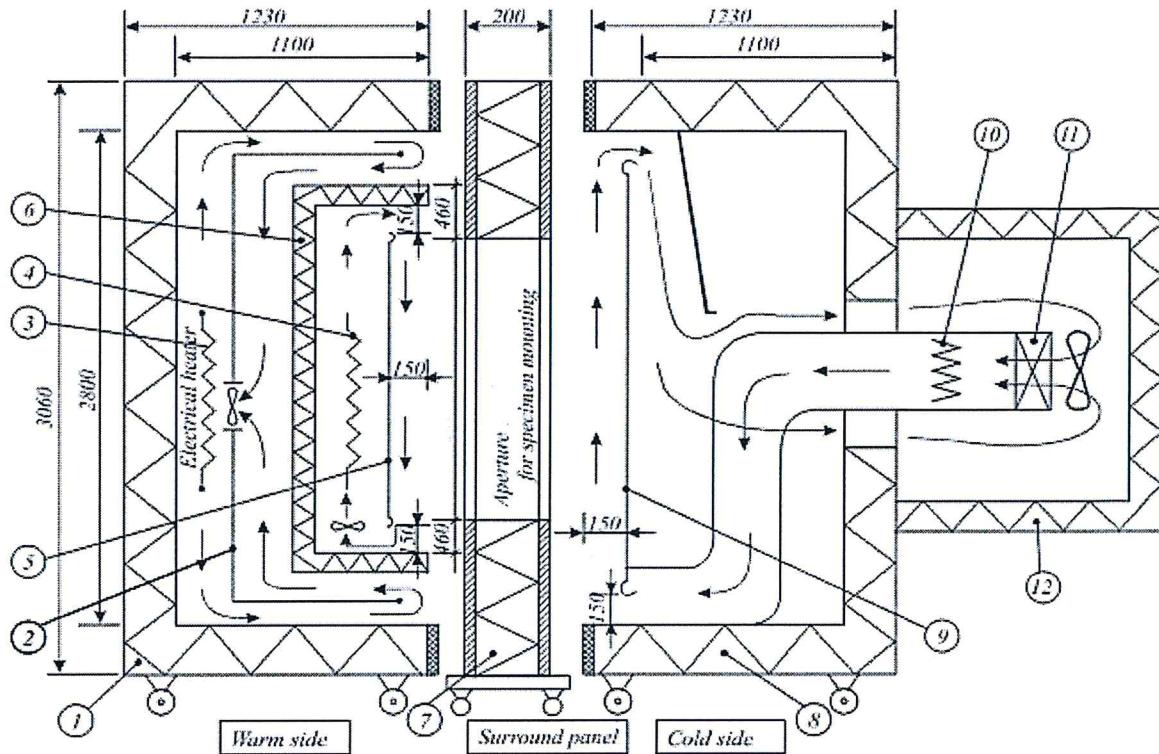
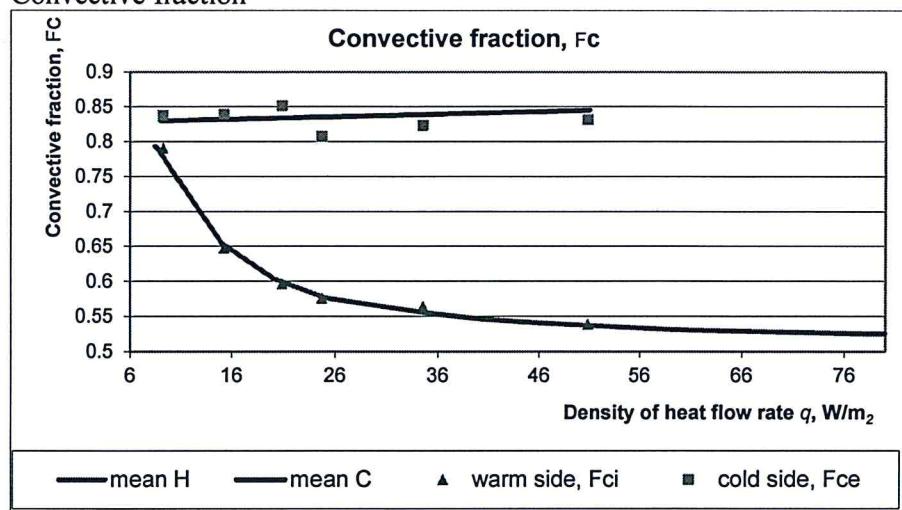
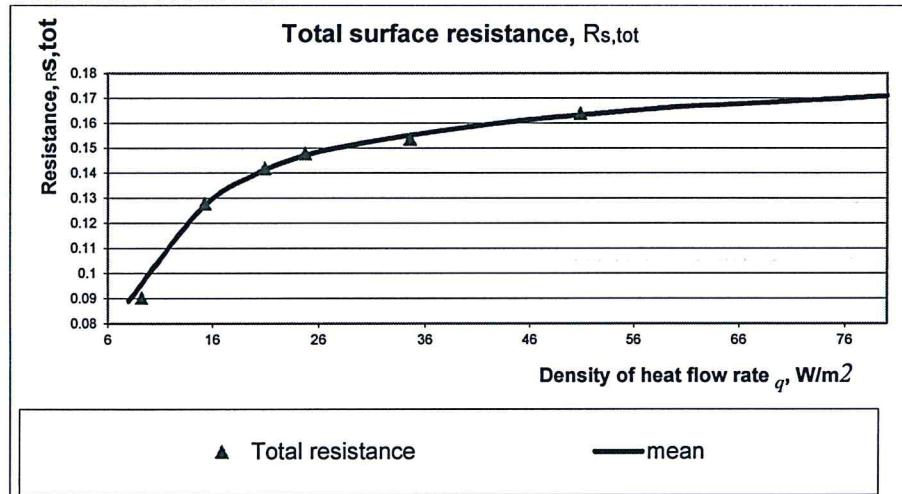

Validity – the named data and results refer exclusively to the tested and described specimens.
Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Fig.2 Drawing of the sample (information submitted by the customer)

Validity – the named data and results refer exclusively to the tested and described specimens.
Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.


Annex 3. Scheme of climate chamber „Hot box“


1. Warm side guard box:
 - internal dimensions $2800 \times 2800 \times 1100$ mm;
 - wall thickness 130 mm, total thermal resistance about $3 \text{ m}^2\text{-K/W}$.
2. Guard air flows deflecting screen.
3. Electrical heater, power 660 W, controlled according to a set point temperature in metering box (6).
4. Electrical heater of metering box, power control from 13W to 660 W.
5. Warm side baffle (of metering box) with surface and air temperature sensors.
6. Metering box – internal dimensions $2400 \times 2400 \times 360$ mm.
7. Surround panel: 200 mm thick, core material EPS polystyrene (faced with 3 mm thick cellular PVC plastic sheet on either side); thermal resistance about $6 \text{ m}^2\text{-K/W}$; 1484 mm (h) \times 1234 mm aperture for window specimen mounting, 2055 mm (h) \times 1234 mm aperture for door specimen mounting.
8. Cold side box:
 - internal dimensions $2800 \times 2800 \times 1100$ mm;
 - wall thickness 130 mm, total thermal resistance about $3 \text{ m}^2\text{-K/W}$.
9. Cold side baffle with surface and air temperature sensors.
10. Cold side box controlled
11. Cold side controlled cooling air unit, max. cooling power up to 3 kW.
12. Cold side air cooling box with 5 speed motor fan. electrical heater, max. power 2 kW. Calibration curves:

Validity – the named data and results refer exclusively to the tested and described specimens.
 Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Convective fraction

Total surface resistance

Thermal resistance of the surround panel: $R_{sur} = 6,1918555 + 0,0518 \cdot t - 0,0075635 \cdot t^2$.

Validity – the named data and results refer exclusively to the tested and described specimens.
Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.